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SUMMARY

The Harten–Lax–van Leer contact (HLLC) and Roe schemes are good approximate Riemann solvers that
have the ability to resolve shock, contact, and rarefaction waves. However, they can produce spurious solu-
tions, called shock instabilities, in the vicinity of strong shock. In strong expansion flows, the Roe scheme
can admit nonphysical solutions such as expansion shock, and it sometimes fails. We carefully examined
both schemes and propose simple methods to prevent such problems. High-order accuracy is achieved using
the weighted average flux (WAF) and MUSCL-Hancock schemes. Using the WAF scheme, the HLLC and
Roe schemes can be expressed in similar form. The HLLC and Roe schemes are tested against Quirk’s
test problems, and shock instability appears in both schemes. To remedy shock instability, we propose a
control method of flux difference across the contact and shear waves. To catch shock waves, an appro-
priate pressure sensing function is defined. Using the proposed method, shock instabilities are successfully
controlled. For the Roe scheme, a modified Harten–Hyman entropy fix method using Harten–Lax–van
Leer-type switching is suggested. A suitable criterion for switching is established, and the modified Roe
scheme works successfully with the suggested method. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

High-resolution shock-capturing schemes require stable and sharp resolution of discontinuities with
high accuracy. Shock-capturing schemes are generally upwind-based schemes and are usually based
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on the local Riemann problem. One of the popular shock-capturing methods is the Godunov-type
scheme. Godunov assumed that conservative variables are piecewise constant over the mesh cells at
each time step, and the time-averaged flux function is determined by the exact solution of the local
Riemann problem at the cell interface [1]. The original Godunov scheme is first-order accurate
and hence highly dissipative. In addition, an iterative method is required because the Riemann
problem has no closed form solution [1]. Approximate state Riemann solvers do not need iterative
processes and hence are more useful. Extensive studies have been conducted to develop Godunov-
type schemes. We examined two approximate Riemann solvers with second-order extension of the
weighted average flux (WAF) and MUSCL-Hancock schemes. The Harten–Lax–van Leer contact
(HLLC) and Roe schemes have good shock-capturing ability, and they also have good contact and
shear wave resolving properties.

For the Roe scheme, a number of problems have been reported [2, 3] and special modification
studies have been conducted [3–5]. Quirk catalogued a number of situations in which the Roe
scheme can give unreliable results in multi-dimensional flows [3]; these include expansion shock,
negative internal energy, slowly moving shock, the carbuncle phenomenon, kinked Mach stem,
and odd–even decoupling. The so-called shock instability and nonexistence of a solution for strong
expansion flows are major problems in such failings. Entropy violating conditions are also a well-
known problem in the Roe scheme. Many researchers try to overcome these entropy violating
solutions using entropy correction [2, 6, 7].

For shock instability problems, previous researchers have shown that Riemann solvers that
resolve the contact and shear waves exactly have problems in the vicinity of strong shock waves.
Quirk suggested a strategy to use combined fluxes so that a dissipative scheme, such as the Harten–
Lax–van Leer–Einfeldt (HLLE) scheme, is used in the shock region [3]. Liou analyzed several
Riemann solvers by expressing numerical fluxes in terms of mass flux. He defined the dissipative
terms in the mass flux of each scheme, and identified the dissipative terms that are responsible
for shock instability [8]. Liou controlled the magnitude of |�2| in the Roe scheme to make the
pressure difference term have a value of zero in the dissipative terms of the mass flux; thus, the
instability was eliminated.

Quirk also described the problems in the strong expansion condition. He used the HLLE scheme
to eliminate the expansion shock appearance in the test problem of supersonic corner flows.

This paper is focused on shock instability and strong expansion problems. Our main interest
is the modification of the HLLC and Roe schemes to remedy the previously described problems.
The main concept of this paper is to control the resolution of the contact and shear waves in
the vicinity of strong shock waves using an appropriate pressure sensing function. In addition,
to avoid the problems of the Roe scheme in strong expansion flows, we use the Harten–Hyman
entropy fix method with Harten–Lax–van Leer (HLL)-type scheme switching. HLL-type schemes
have no problem in strong expansion flow, and they can be used as an alternative method.
A suitable criterion to estimate the survival of the Roe scheme is presented. Beyond the limits of
such estimation, the HLL-type scheme is used and it shows good results.

2. APPROXIMATE RIEMANN SOLVERS

The Godunov method is to find solution of the Riemann problem, which may be the exact solution
or an approximate solution. Approximate solutions considered in this paper are the HLL, HLLE,
HLLC, and Roe schemes, which are explicit approximate solutions. Figure 1 shows the structure of
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Figure 1. Structure of the solution of the Riemann problem with data Un
i and Un

i+1.

the Riemann problem for the x-split two-dimensional Euler equations [1]. There are three waves and
four separate constant states. Pressure and normal velocity are constant in the star region across the
middle wave. Middle wave S∗ has the multiplicity 2 of the eigenvalue u. The �2 field is associated
with contact discontinuity and density jumps discontinuously. There is a new characteristic field
associated with �3. This corresponds to a shear wave in which the tangential velocity component
v changes. The �2 and �3 fields are linearly degenerate, and the �1 and �4 characteristic fields are
genuinely nonlinear and are associated with rarefaction and shock waves [1].

To solve the multi-dimensional nonlinear systems of hyperbolic conservation laws, we employed
a finite volume approach. For nonCartesian grids, a rotating and rotate-back method is used.

2.1. HLL and HLLC schemes

Harten, Lax, van Leer presented a direct approximation of the numerical flux to compute Godunov
flux [9]. The resulting HLL Riemann solver consists of two waves with three constant states. The
HLL Riemann solver is very efficient and robust, and gives a physical, entropy-satisfying solution.
The HLL scheme can be applied directly to Euler equations without any modifications. However,
the two-wave assumption is incorrect in Euler equations. The resolution of contact and shear waves
can be very inaccurate. Toro et al. HLLC scheme is a modification of the HLL scheme whereby
the missing contacts and shear waves are restored [10]. The HLLC scheme is the simplest solver to
preserve shock, contact, and shear waves exactly. Batten et al. have shown that the HLLC scheme
is positively conservative [11].

HLL intercell flux is written as [1, 9]

FHLL
i+1/2=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

FL, 0�SL

F∗L=FL+SL(UHLL−UL), SL�0�S∗
F∗R=FR−SR(UR−UHLL), S∗�0�SR

FR, 0�SR

(1)

where SL is the smallest wave speed and SR is the largest wave speed.
The constant state (star region) vector UHLL is the average of the exact Riemann problem

between the slowest and fastest waves [1, 9]:

UHLL= SRUR−SLUL+FL−FR

SR−SL
(2)
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Because the HLL scheme assumes a two-wave system, F∗L and F∗R are the same as HLL flux
FHLL:

FHLL= SRFL−SLFR+SRSL(UR−UL)

SR−SL
(3)

The HLLC intercell flux is written as [1, 10]

FHLLC
i+1/2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

FL, 0�SL

F∗L=FL+SL(U∗L−UL), SL�0�S∗
F∗R=FR−SR(UR−U∗R), S∗�0�SR

FR, 0�SR

(4)

U∗L and U∗R are the conserved variable vectors in the star region between the smallest and largest
wave speeds. F∗L and F∗R are obtained by applying Rankine–Hugoniot conditions across the each
of the waves [1].

The HLL and HLLC schemes require the estimation of the smallest, largest, and middle wave
speeds in the Riemann problem. To obtain wave speeds for the HLLC scheme, we use the pressure–
velocity-based wave speed estimation of Toro [1].

The HLL scheme is usually used in a combined form. The HLL scheme in a single formula is
expressed as [12]

FHLL
i+1/2= b+

b+−b−FL− b−

b+−b−FR+ b+b−

b+−b− (UR−UL) (5)

where

b+ =max(0,bR), b− =min(0,bL) (6)

Numerical wave speeds bR and bL of the HLL scheme are written as [1, 12]
bL = SL , bR = SR (7a)

Einfeldt et al. proposed the wave speed motivated by the Roe-averaged values ũn and ã [4]. Using
the following wave speed, the HLL scheme is often called the HLLE scheme [1, 4, 12]:

bL =min(SL , ũn− ã), bR =max(SR, ũn+ ã) (7b)

The subscript n implies the normal component at the cell interface.
The HLLC scheme can also be expressed in a single formula:

FHLLC
i+1/2 =C1FL+C2FR+A(U∗L−UL)+B(U∗R−UR) (8)

Coefficients C1, C2, A, and B are defined as follows:

C1= max(0, S∗)
S∗

, C2= min(0, S∗)
S∗

(9a)

A= SL

(
C1−max(0, SL)

SL

)
, B= SR

(
C2−min(0, SR)

SR

)
(9b)
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When S∗ approaches zero, C1 and C2 are determined as follows:

|S∗|<ε,

{
S∗ >0, C1=1.0, C2=0.0

S∗ <0, C1=0.0, C2=1.0
(10)

ε is chosen to be 10−16.

2.2. Roe scheme

In the original Roe scheme, the average Jacobian matrix Ã is first sought to find averaged eigen-
values, right eigenvectors, and wave strengths [13]. In the Roe–Pike method, the construction of
Ã is avoided and scalar quantities are obtained by direct averages [1]. In this paper, The Roe–Pike
method is used instead of the original Roe method.

According to the sign of the waves, the numerical flux of the Roe scheme is expressed as the
one-sided formula [14]:

Fi+1/2=FL+ ∑
�̃k�0

�̃k �̃kK̃(k) or Fi+1/2=FR− ∑
�̃k�0

�̃k �̃kK̃(k) (11)

Alternatively, they can be written by the averaged formula [14]

Fi+1/2= 1

2
(FL+FR)− 1

2

m∑
k=1

�̃k |�̃k |K̃(k) (12)

Data and flux differences are expressed with the wave strengths �̃k , eigenvalues �̃k , and the right
eigenvectors K̃(k) [14]:

DU(k) = �̃kK̃(k), DF(k) = �̃k �̃kK̃(k) = �̃kDU(k) (13)

Each flux difference is expressed as

DF(1) = �̃1�̃1K̃(1) = �̃1DU(1) =F∗L−FL (14a)

DF(2) = �̃2�̃2K̃(2)+ �̃3�̃3K̃(3) =F∗R−F∗L (14b)

DF(3) = �̃4�̃4K̃(4) = �̃4DU(4) =FR−F∗R (14c)

The second flux difference is related to the wave jumps �̃2�̃2K̃(2) and �̃3�̃3K̃(3). From the first
and the third flux differences, F∗L and F∗R can be expressed by the first and last wave strengths,
eigenvalues, and right eigenvectors. This expression gives a simple way of extending the procedure
to three-dimensional flows [15]:

F∗L=FL+ �̃1�̃1K̃(1) =FL+ �̃1DU(1) =FL+ �̃1(U∗L−UL) (15a)

F∗R=FR− �̃4�̃4K̃(4) =FR− �̃4DU(4) =FR− �̃4(UR−U∗R) (15b)
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The first and last wave strengths and right eigenvectors are [1]

�̃1= 1

2ã2
[�p− �̃ã�un], �̃4= 1

2ã2
[�p+ �̃ã�un] (16)

K̃(1) =[1, ũn− ã, ũt , H̃− ũnã]T (17a)

K̃(4) =[1, ũn+ ã, ũt , H̃+ ũnã]T (17b)

All fluxes across the waves in the Riemann fan (Figure 1) are expressed with the first and last
wave strengths, eigenvalues, right eigenvectors, and the left and right fluxes.

2.3. Entropy fix of the Roe scheme

The linearized Riemann problem solution consists only of discontinuous jumps, and they are
good approximations for the shocks and contacts. However, the rarefaction waves have continuous
changes. Therefore, the linearized Riemann problem solution has difficulties when the rarefaction
wave is transonic or sonic. In that situation, nonphysical, entropy violating discontinuous waves
can appear. Harten and Hyman presented a modification to eliminate such entropy violating
discontinuities [16]. It is a well-known entropy fix method, and the Roe scheme satisfies the
entropy condition with it. Einfeldt et al. analyzed the characteristics of low internal energy flows
[4]. He showed that the reason for the failure of the Roe scheme is the underestimated numerical
wave speeds. In linearized solvers, all wave speeds are obtained from a single-averaged state. Wave
speeds obtained in such a manner will, in general, underestimate the true expansion wave velocity
[17]. Negative internal energies and expansion shocks appear under such conditions. In expansion
flows, a physically admissible discontinuity of speed S requires ST�S�SH, where SH and ST are
head and tail wave speeds, respectively.

In this paper, we used the Harten–Hyman entropy fix modified by Toro [1]. Figure 2 shows the
left transonic rarefaction case [1]. A new state USL is introduced, and a single jump (U∗L−UL)

with speed �̃1 is split into two jumps, (USL−UL) and (U∗L−USL), with speeds �L1 and �R
1 . The

(a) (b)

Figure 2. Harten–Hyman Entropy fix: (a) left transonic rarefaction waves and (b) entropy
fix for left transonic rarefaction wave.
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resulting new eigenvalue is expressed as [1]

�̄1=�L1

(
�R
1 − �̃1

�R
1 −�L1

)
(18a)

In the right transonic rarefaction case, the new eigenvalue is [1]

�̄4=�R
4

(
�̃4−�L4
�R
4 −�L4

)
(18b)

Toro’s version of the Harten–Hyman entropy fix relies on the estimation for particle velocity u∗,
sound speeds a∗L and a∗R , and the head and tail wave speeds of the rarefaction.

In the left transonic case, wave speeds �L1 and �R
1 are expressed as [1]

�L1 =uL −aL , �R
1 =u∗−a∗L (19a)

In the right transonic case, wave speeds �L4 and �R
4 are expressed as [1]

�L4 =u∗+a∗R, �R
4 =uR+aR (19b)

The star values are obtained by the relations U∗L−UL= �̃1K̃(1) and UR−U∗R= �̃4K̃(4).

3. HIGH ORDER AND TVD METHOD

3.1. WAF approach

The WAF scheme is the second-order extension of the Godunov first-order upwind method. This
is second-order accurate in space and time [1, 18–21]. The WAF scheme appears to give better
results than the MUSCL-Hancock scheme, and needs only a very small number of cells to resolve
shock and contact [1]. In addition, it has very low numerical diffusion.

In the WAF scheme, the intercell flux is represented by an integral average of the physical flux
across the full structure of the solution of a local Riemann problem. The structure of the solution
of the Riemann problem with data Un

i and Un+1
i consists of three waves and four constant states.

As shown in Figure 3, the integral average of the WAF intercell flux has a summation involving
flux terms in regions 1–4 with weights obtained by normalizing lengths A0A1 through A3A4. Each
constant state and the waves are written as [1]

S1= SL , S2= S∗, S3= SR (20)

U(1) =Un
i , U(2) =U∗L, U(3) =U∗R, U(4) =Un

i+1 (21)

The WAFs are [1]

Fi+1/2=
N+1∑
k=1

�kF
(k)
i+1/2, �k = |Ak−1Ak |

�x
, k=1, . . . ,4 (22)
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Figure 3. Evaluation of the WAF intercell flux.

Weights �k are expressed in terms of the wave speed Sk as [1]
�k = 1

2 (ck−ck−1)

ck = �t Sk
�x

, ck =Courant number for wave k of speed Sk
(23)

An alternative form of the flux is written as [1]

Fi+1/2= 1

2
(Fi+Fi+1)− 1

2

N∑
k=1

ck�F
(k)
i+1/2 (24)

3.2. TVD version of WAF

Because the WAF scheme is a second-order accurate scheme, spurious oscillations appeared in the
vicinity of high gradient.

The TVD modification of the WAF flux with limiter function �(k)
i+1/2 is written as [1]

Fi+1/2= 1

2
(Fi+Fi+1)− 1

2

N∑
k=1

sign(ck)�
(k)
i+1/2�F

(k)
i+1/2 (25)

where

�(k)
i+1/2=�i+1/2(r

(k)) (26)

The flow parameter r (k) is defined by [1]

r (k) =
⎧⎨
⎩

�q(k)
i−1/2/�q

(k)
i+1/2, ck >0

�q(k)
i+3/2/�q

(k)
i+1/2, ck <0

(27)

where � is selected for a single quantity q [1]. For the limiter function �(k)
i+1/2, the MINBEE limiter

is used.
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3.3. Application of WAF to the HLL and HLLC schemes

WAF schemes can be applied directly to the HLL and HLLC approximate Riemann solvers. When
we use the HLL or HLLE scheme, the second wave jumps are neglected; hence, there is no
difference across the contact and shear waves.

The numerical flux of the HLLC scheme at the intercell boundary is given as [1]

FHLLC,WAF
i+1/2 = 1

2
(FL+FR)− 1

2

⎡
⎢⎢⎣
sign(c1)�

(1)(F∗L−FL)

+sign(c2)�
(2)(F∗R−F∗L)

+sign(c3)�
(3)(FR−F∗R)

⎤
⎥⎥⎦ (28)

The left and right fluxes in star region are expressed as [1]
F∗L=FL+SL(U∗L−UL) (29a)

F∗R=FR−SR(UR−U∗R) (29b)

In the HLLC scheme, star region values are obtained with jump conditions across each wave
as described by [1]

U∗K=�K

(
SK −unK
SK −S∗

)
⎡
⎢⎢⎢⎢⎢⎢⎣

1

S∗
utK

EK

�K
+(S∗−unK )

[
S∗+ pK

�K (SK −unK )

]

⎤
⎥⎥⎥⎥⎥⎥⎦

, K = L or R (30)

The Courant numbers for wave k are [1]

c1= SL
�t

�x
, c2= S∗

�t

�x
, c3= SR

�t

�x
(31)

The HLL and HLLE schemes can be expressed in a similar manner:

FHLL/HLLE,WAF
i+1/2 = 1

2
(FL+FR)− 1

2

⎡
⎢⎢⎣
sign(c1)�

(1)(F∗L−FL)

+0

+sign(c3)�
(3)(FR−F∗R)

⎤
⎥⎥⎦ (32)

The expressions for F∗L and F∗R are same as in the HLLC scheme. Data U∗L and U∗R have
same value, UHLL.

3.4. Reinterpretation of the Roe scheme and application of the WAF scheme

Quirk presented second-order extension of the Roe scheme using WAF scheme [15]

FRoeWAF,Quirk
i+1/2 = 1

2
(FL+FR)− 1

2

N∑
k=1

[1−�(k)(1−|ck |)]
|ck | ck �̃k �̃kK̃(k) (33)
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where �(k) is the conventional flux limiter. Equation (33) also gives the relation between the WAF
limiter function and the conventional limiters.

This relation is also presented by Toro [1]:
�(k) =1−�(k)(1−|ck |) (34)

Equation (33) can be obtained in different point of view. The numerical flux of the Roe scheme
in the averaged formula can be expanded as follows:

FRoe
i+1/2 = 1

2
(FL+FR)− 1

2

m∑
k=1

�̃k |�̃k |K̃(k) = 1

2
(FL+FR)− 1

2

m∑
k=1

sign(�̃k)�̃k �̃kK̃(k)

= 1

2
(FL+FR)− 1

2

⎡
⎢⎢⎣
sign(�̃1)(F∗L−FL)

+sign(�̃2)(F∗R−F∗L)

+sign(�̃4)(FR−F∗R)

⎤
⎥⎥⎦ (35)

This alternative formula for the Roe scheme can be interpreted as an evenly weighted WAF
formulation. Using Equations (34) and (35), no special treatment is needed for the Roe scheme to
apply the WAF scheme. Therefore, the resulting Roe scheme in the WAF form can be written as

FRoeWAF
i+1/2 = 1

2
(FL+FR)− 1

2

⎡
⎢⎢⎣
sign(c1)�

(1)(F∗L−FL)

+sign(c2)�
(2)(F∗R−F∗L)

+sign(c3)�
(3)(FR−F∗R)

⎤
⎥⎥⎦ (36)

where

F∗L=FL+ �̃1�̃1K̃(1), F∗R=FR− �̃4�̃4K̃(4) (37)

c1= �̃1
�t

�x
, c2= �̃2

�t

�x
, c3= �̃4

�t

�x
(38)

Here, we see that the HLLC and Roe schemes can be written in the same framework using the
WAF scheme.

3.5. MUSCL-Hancock method

The MUSCL-Hancock scheme in two-dimensional flow has the following three steps [1]. The first
step is to obtain reconstructed data and boundary-extrapolated values. The cell averages Un

i,j are
reconstructed using slope vectors �i and � j . Then, the boundary-extrapolated values are [1]

U−x
i,j =Un

i,j− 1
2�i , U+x

i,j =Un
i,j+ 1

2�i (39a)

U−y
i,j =Un

i,j− 1
2� j , U+y

i,j =Un
i,j+ 1

2� j (39b)
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The second step is to obtain the evolution of boundary extrapolated values [1]:

Û−x
i,j =U−x

i,j + �t

2�x
[F(U−x

i,j )−F(U+x
i,j )]− �t

2�y
[G(U−y

i,j )−G(U+y
i,j )] (40a)

Û+x
i,j =U+x

i,j + �t

2�x
[F(U−x

i,j )−F(U+x
i,j )]− �t

2�y
[G(U−y

i,j )−G(U+y
i,j )] (40b)

Û−y
i,j =U−y

i,j + �t

2�x
[F(U−x

i,j )−F(U+x
i,j )]− �t

2�y
[G(U−y

i,j )−G(U+y
i,j )] (40c)

Û+y
i,j =U+y

i,j + �t

2�x
[F(U−x

i,j )−F(U+x
i,j )]− �t

2�y
[G(U−y

i,j )−G(U+y
i,j )] (40d)

The last step is to obtain the solution of the Riemann problem. At intercell position (i+ 1
2 , j),

Û+x
i,j and Û−x

i+1,j are used as left and right values to obtain the solution Ui+1/2,j [1].

4. SHOCK INSTABILITY AND ITS CURE

Quirk concluded that any Godunov scheme built on a single Riemann solver has shortcomings
and sometimes fails [3]. Therefore, he suggested the combination method with the dissipative
scheme. Liou suggested that the cause of such failings can be described as a transverse numerical
instability associated with the shock wave, and called it ‘shock instability’ [8]. A simple test can
be carried out to validate Liou’s suggestion for Quirk’s odd–even grid perturbation problem. The
centerline of the grid is perturbed from a perfectly uniform grid by ±10−6, and the grid size is
801×21. A moving shock of Ms=6 propagates down a duct. Previous researchers have shown
that the HLLE scheme is free from shock instability. Therefore, the HLLE scheme is applied only
to one direction to see the directional effect. Figure 4 shows the density contour at Xs∼300. In
the left column of Figure 4, the HLLE scheme is applied to the numerical flux in the x-direction.
The decoupling becomes progressively worse as the shock propagates down the duct. In the right
column of Figure 4, the numerical flux in the y-direction is determined by the HLLE scheme.

300

:HLLC
y-direction

:HLLE
x-direction

x

y

300

:HLLE
y-direction

:HLLC
x-direction

300

:Roe
y-direction

:HLLE
x-direction

300

:HLLE
y-direction

:Roe
x-direction

Figure 4. Odd–even decoupling occurrence according to the direction of HLLE application.
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In this case, the dissipative scheme is applied in the transverse direction of the shock wave, and
odd–even decoupling is completely eliminated. It shows that shock instability can be removed
when the dissipative scheme is applied in the transverse direction of the shock wave.

Liou analyzed the structure of the numerical diffusivity of several numerical flux schemes [8]. In
his analysis, the dissipation term is further expanded in terms of differences of primitive variables
�, u, and p. He then defined the dissipation coefficients of density difference D(�) and pressure
difference D(p) and showed the roles of the dissipation coefficients of the AUSM+, AUSMDV,
HLLE, and Roe scheme. Different schemes have different representations for D(�) and D(p). He
confirmed that the root of the shock instability is the dissipative pressure term in the mass flux.
Liou presented the following lemma: ‘A scheme having the property D(p) =0 in the mass flux is a
shock-stable scheme.’ Quirk employed the HLLE scheme in the vicinity of a strong shock using a
localized switching function. Although the HLLE scheme is a low-resolution scheme, it resolves
isolated shocks as well as an exact Riemann solver [3]. By Liou’s analysis, the HLLE scheme
has the property of D(p) =0. Pandolfi and D’Ambrosio reported that ‘methods that explicitly deal
with the contact surface display a clear evidence of carbuncle phenomenon; if the interaction is
very weak, or totally ignored, no carbuncle instability occurs’ [22]. From the previous studies and
the results of Figure 4, we can see that shock instability is related to the resolution of the contact
and shear waves. Therefore, we propose a new approach to control shock instability with a simple
adjustment of the flux differences across the middle wave of the Riemann problem. Our suggested
method is applied to the HLLC and Roe schemes.

4.1. Numerical mass fluxes in the Roe and HLLC schemes

Liou expressed numerical fluxes in terms of the mass flux and defined dissipation terms in the
mass flux to analyze the root of shock instability in each scheme [8]. For the Roe scheme, centrally
weighted average 〈ṁ〉 and dissipation coefficients in mass flux are expressed as follows [8]:

〈ṁ〉= 1
2 (�LunL +�RunR) (41a)

D(�) =|�̃2| (41b)

D(p) = 1

2ã2
(|�̃1|+|�̃5|−2|�̃2|) (41c)

Liou showed that a scheme which has the property of D(p) =0 is the shock stable scheme. The
Roe scheme has D(p) �=0 and thus cannot avoid shock instability. In Liou’s analysis, mass flux
is only used in the continuity equation because the Roe scheme does not fit in the general mass
flux form. For the HLLC scheme, the same process is applied. Mass flux is only applied in the
continuity equation of the HLLC flux. Using the single formula of the HLLC scheme presented
in Section 2.1 (see Equation (8)), the flux of the continuity equation is expressed as follows:

f HLLC(continuity) =C1�LunL +C2�RunR+A

(
�L

SL −unL
SL −S∗

−�L

)
+B

(
�R

SR−unR
SR−S∗

−�R

)
(42)

The dissipation term of the continuity equation is given by

DHLLC
(continuity) = A�L

S∗−unL
SL −S∗

+B�R
S∗−unR
SR−S∗

(43)
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The preceding expression does not contain any pressure difference terms. However, the estimated
wave speed of the middle wave S∗ contains a pressure difference term as follows:

S∗ = pR− pL +�LunL(SL −unL)−�RunR(SR−unR)

�L(SL −unL)−�R(SR−unR)
(44)

The pressure difference term in S∗ is written as

1

�L(SL −unL)−�R(SR−unR)
�p (45)

The HLLC scheme also has a nonzero pressure difference term and it cannot avoid shock
instability.

4.2. New approach to remedy shock instability

We propose a new approach to remedy shock instability in the framework of the HLLC approximate
Riemann solver by defining an appropriate blending function. By reducing the data jump across
the middle wave, the three-wave system approaches a two-wave system, and hence approaches the
property of the HLL scheme. Figure 5 shows the proposed method of controlling the second data
jump, U∗R−U∗L, across the middle wave to remedy shock instability.

A reference data state is selected as an integral average of the exact solution of the Riemann
problem UHLL between the smallest and the largest waves at time T.

Introducing the function f and reference data state UHLL, the second data jump U∗R−U∗L is
split into two parts: f ·(UHLL−U∗L) and f ·(U∗R−UHLL). Whenever the function f has a value
below unity, the HLL scheme blends automatically with the original contact resolving scheme.

Left and right fluxes in the star region are now defined by newly obtained data of states Unew
∗L

and Unew
∗R :

Fnew
∗L =FL+SL(Unew

∗L −UL) (46a)

Fnew
∗R =FR−SR(UR−Unew

∗R ) (46b)

t

x

T

LU

L*U

RU

HLLU

LS RS*S

R*U

new
L*U

new
R*U

LU
L*U

RU

HLLU

R*U

LS RS*S

( )L*UU −⋅ HLLf

( )HLLf UU R −⋅ *

2
1+i

Figure 5. Controlled data jump quantities across the middle wave to remedy shock instability.
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The new data states Unew
∗L and Unew

∗R are obtained as follows:

Unew
∗L = f ·U∗L+(1− f ) ·UHLL (47a)

Unew
∗R = f ·U∗R+(1− f ) ·UHLL (47b)

The resulting data of states Unew
∗L and Unew

∗R can be applied directly in the HLLC method. For the
Roe scheme, the new data states can also be applied to the reinterpreted formulation in Section 3.4
(see Equations (35) and (36)).

4.3. Blending function f

The previously proposed procedure must be applied in the vicinity of shock. Therefore, a blending
function is needed which catches only shock waves. Quirk used the following function in the guise
of a mesh refinement monitor function to identify the required cell interfaces [3]:

|pR− pL |
min(pR, pL)

>�, � : user-defined value (48)

The user-defined value � must be supplied to use Quirk’s function. We define the blending
function in the form of the inverse of Quirk’s function, and it is limited to unity.

A new function f is expressed as follows:

f = min(pR, pL)

|pR− pL |+ε
limitation f �1.0 (49)

ε is chosen to be 10−16.
pR and pL are the pressures that act on the cell interface. From the definition of the new

data states Unew
∗L and Unew

∗R (Equations (47a) and (47b)), the function f should be lower than
unity. Except shock waves, the pressure changes continuously and the pressure difference pR− pL
across the cell interface is not large. Therefore, the blending function has a value of 1.0 in most
computational domain. In the vicinity of the shock waves, the pressure difference is increased and
the blending function has a meaningful value.

Figure 6 shows the normal shock relations and corresponding blending function profile. From a
pressure ratio of 2, the blending function is activated and shows a sharp decrease as the pressure
ratio is increased and approaches zero.

As shown in Figure 4, shock instability occurred by the transferred perturbation in the transverse
direction of the shock. Therefore, all the neighboring intercells must be examined [5]. Figure 7
shows the required surfaces to identify cell surfaces for the blending function in the x- and
y-direction numerical flux calculations.

fx =min( fi+1/2, j , fi, j+1/2, fi, j−1/2, fi+1, j+1/2, fi+1, j−1/2) (50a)

fy =min( fi, j+1/2, fi−1/2, j , fi+1/2, j , fi−1/2, j+1, fi+1/2, j+1) (50b)

4.4. HLLC scheme with HLL blending in WAF formulation

For the HLLC scheme, the proposed method is applied directly without any modification. Our
method only controls the data at the star region, and wave speeds are not changed. Wave speeds are
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Figure 6. Normal shock relation and blending function.
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Figure 7. Required surfaces to identify cell surfaces for blending function.

physical wave speeds obtained using the pressure–velocity-based wave speed estimation method
of Toro. This method is named HLLC–HLL for convenience. The resulting HLLC–HLL scheme
in the WAF form can be written as

FHLLC–HLL,WAF
i+1/2 = 1

2
(FL+FR)− 1

2

⎡
⎢⎢⎣
sign(c1)�

(1)(FHLLC–HLL
∗L −FL)

+sign(c2)�
(2)(FHLLC–HLL

∗R −FHLLC–HLL
∗L )

+sign(c3)�
(3)(FR−FHLLC–HLL

∗R )

⎤
⎥⎥⎦ (51)
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Newly defined fluxes FHLLC–HLL
∗L and FHLLC–HLL

∗R are expressed as follows:

FHLLC–HLL
∗L =FL+SL(UHLLC–HLL

∗L −UL) (52a)

FHLLC–HLL
∗R =FR−SR(UR−UHLLC–HLL

∗R ) (52b)

where

UHLLC–HLL
∗L =Unew

∗L (53a)

UHLLC–HLL
∗R =Unew

∗R (53b)

4.5. Roe scheme with HLLE blending in WAF formulation

In the Roe scheme, wave speeds are expressed in terms of Roe-averaged values. The HLLE scheme
also uses Roe-averaged values to estimate wave speeds. As the function f has a value below the
unity, the HLLE scheme blends with the Roe scheme. The Roe scheme with HLLE blending is
named Roe–HLLE:

FRoe−HLLE,WAF
i+1/2 = 1

2
(FL+FR)− 1

2

⎡
⎢⎢⎣
sign(c1)�

(1)(FRoe–HLLE∗L −FL)

+sign(c2)�
(2)(FRoe–HLLE∗R −FRoe–HLLE∗L )

+sign(c3)�
(3)(FR−FRoe–HLLE∗R )

⎤
⎥⎥⎦ (54)

Newly defined fluxes FRoe–HLLE∗L and FRoe–HLLE∗R are expressed as follows:

FRoe–HLLE∗L =FL+ �̃1(URoe–HLLE∗L −UL) (55a)

FRoe–HLLE∗R =FR− �̃4(UR−URoe–HLLE∗R ) (55b)

The newly defined data states URoe–HLLE∗L and URoe–HLLE∗R are expressed with eigensystem values:

URoe–HLLE∗L = f ·URoe∗L +(1− f ) ·UHLL (56a)

URoe–HLLE∗R = f ·URoe∗R +(1− f ) ·UHLL (56b)

where

URoe∗L =UL+ �̃1K̃(1), URoe∗R =UR− �̃4K̃(4) (57)

4.6. HLLC and Roe schemes with HLLE blending in MUSCL formulation

Using the MUSCL-Hancock scheme, high-order extension is achieved by reconstructed data.
Hence, the HLL or HLLE blending technique is applied directly into the HLLC and Roe schemes.

5. HARTEN–HYMAN ENTROPY FIX AUGMENTED BY HLL-TYPE SCHEME

Quirk pointed out that the basic form of the Roe scheme is unable to cope with the test problem
of a strong shock diffracting around a corner [3]. As already described in Section 2.3, the entropy
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violating condition is the main drawback of the Roe scheme. The common fix for this problem
is to use Harten’s classical entropy fix. However, Harten entropy fix is also applied to the contact
waves and has a similar effect to our method in Section 4.2. The entropy violating condition of
the Roe scheme is associated with the nonlinear fields, since there are no entropy considerations
in a linearly degenerate field. The Harten–Hyman entropy fix controls the rarefaction waves only
by introducing an intermediate state that has continuous changes. Therefore, we adopted the
Haten–Hyman entropy fix.

The proposed blending function surely catches points where the expansion wave is strong, but
HLLE blending does not guarantee a stable solution. At these points, especially at corners, the
blending function f has a value of about 0.2. Even when f is given a value of 0.0, the Roe scheme
fails with Toro’s version of the Harten–Hyman entropy fix when the shock turns at the corner.
A dissipative scheme blending method controls the magnitude of the flux difference across the
middle wave. Thus, it is associated with linear characteristic fields. However, the Harten–Hyman
entropy fix modifies the left or right rarefaction wave speeds and is associated with nonlinear fields.
Therefore, the blending method does not seem to be suitable in this situation. Therefore, another
simple method is suggested when the Harten–Hyman entropy fix of the Roe scheme fails. Quirk
employed the HLLE scheme along the sonic lines and strong expansion region [3]; therefore, the
HLLE scheme is used across very wide region.

Now we propose a certain criterion as to whether the Harten–Hyman entropy fix fails or not.
To use Toro’s version of the Harten–Hyman entropy fix, we must obtain star values to estimate
the head and tail rarefaction waves (see Figure 2).

The relation of data difference for the left transonic rarefaction case is [1, 13]
U∗L −UL = �̃1K̃(1) (58)

The head and tail rarefaction waves are obtained from the particle velocity u∗ and sound speed
a∗L . To estimate the sound speed, pressure or temperature is required.

Internal energy in the star region is obtained as

e∗L = 1

�∗
L
[�L EL + �̃1(H̃− ũnã)]− 1

2
(u∗2

nL +u∗2
t L) (59)

Pressure or temperature in the star region is easily obtained from e∗
L , and the sound speed is

calculated using thermodynamic relations. Here, we can set pressure or temperature limits. User-
defined limits need not be the actual values. A fairly wide range of limits gives good results.
We used temperature limits from 50 to 5000K. When the resulting temperature deviates from
the ranges, we can use full HLLE scheme switching. The HLLC scheme can also be used as
a switching scheme to the Roe scheme without sacrificing the exact capturing of contact and
shear waves. The HLLC scheme has a shock instability problem, but there is no problem at this
strong expansion point. The HLLC and HLLE schemes have the property of preserving positivity.
When the HLLC scheme is used as a switching scheme, additional wave speed estimation steps
are required. Because the HLLC and Roe schemes are expressed in the same framework using
the WAF scheme (Equations (28) and (36)), only F∗L and F∗R are changed. Figure 8 shows the
detailed procedure of the Haten–Hyman entropy fix augmented by the HLL-type scheme. Figure 9
shows the results of the supersonic corner problem using the first-order accurate Roe scheme with
Harten–Hyman entropy fix using HLLE switching. Figure 9(b) shows the points where the entropy
fix is required. A parallel line at the corner is the region where the expansion is strong and the
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Figure 8. Harten–Hyman entropy fix with HLLC/HLLE switching.

expansion shock can appear. By tracking the HLLE switching points, only one or two points are
required at the corner for HLLE switching with the entropy fix.

6. NUMERICAL RESULTS

All the numerical computations are conducted with a CFL number of 0.5. Shock-stable schemes
that are blended with dissipative schemes are named as HLLC–HLL and Roe–HLLE. Every result
in each test problem is printed at the same time level.
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1st order Godunov

only 1 or 2 points

at the corner

(a)

(b) (c)

Figure 9. Supersonic corner problem using Harten–Hyman entropy fix with HLLE switching (first-order
Godunov): (a) Roe scheme; (b) Harten–Hyman entropy fix; and (c) HLLE switching points.

6.1. Odd–even decoupling

Figure 10 shows Quirk’s odd–even decoupling test problem [3]. All the results show the density
contour at Xs∼300. Original schemes that resolve the contacts—HLL and Roe schemes—show
the promotion of odd–even decoupling along the shock. However, the HLLE scheme is free from
decoupling. Using blending function f , HLLC–HLL and Roe–HLLE show that decoupling is
completely eliminated. In these cases, blending function f has a value of about 0.55 along the shock.
Figure 11 shows the second-order results of approximate Riemann solvers using WAF schemes with
a MINBEE(Minmod) limiter. Figure 12 shows the second-order results of approximate Riemann
solvers using MUSCL-Hancock schemes with a MINBEE(Minmod) limiter. When the high-order
scheme is used, pressure gradients at cell interfaces have sharper values, and the resulting blending
function has a value of about 0.3.

6.2. The carbuncle phenomenon

The carbuncle problem has been observed and discussed for many years. It is considered as a
typical example of shock instability. The carbuncle phenomenon was first observed by Peery for
blunt body simulations using the Roe scheme [2]. When supersonic or hypersonic blunt body
flow is simulated, spurious solutions can appear along the stagnation line. There are nonphysical
recirculation regions and a protuberance grows ahead of the bow shock. Some researchers overcome
this phenomenon using an entropy fix [2, 6, 7]. However, it is a convenient method to add an
artificial dissipation into the scheme [3]. Figures 13–16 show the numerical results of supersonic
sphere flows. The freestream Mach number is 5.7, and the grid size is 250×200. In Figure 13, the
HLLC scheme shows a sawtooth-like shock front, and a protuberance does not grow. However,
nonphysical recirculation is generated at the stagnation point. The Roe scheme shows a typical
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Figure 10. Odd–even grid perturbation problem (first-order Godunov). Left: original
schemes, Right: shock stable schemes.
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Figure 11. Odd–even grid perturbation problem (second-order WAF with MINBEE (Minmod) limiter).
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Figure 12. Odd–even grid perturbation problem (second-order MUSCL with MINBEE (Minmod) limiter).

Roe-HLLE
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HLLCHLLC Roe HLLC-HLL Roe-HLLE

HLLC-HLL

blending
function

Figure 13. Supersonic sphere flow, density, and blending function distribution (second-order
WAF with MINBEE (Minmod) limiter).

carbuncle phenomenon and failed. The carbuncle phenomenon is not shown in HLLC–HLL and
Roe–HLLE. Pressure, temperature, and the total enthalpy profile along the stagnation line in
Figure 14 show good results. Figures 15 and 16 show numerical results with MUSCL schemes.
Results in the stagnation region are somewhat different with WAF schemes, but they show similar
results.

The blending function is activated along the shock wave, and is used at only 1% of the total
computational domain.

6.3. Kinked Mach stem

When a plane shock is reflected from a ramp, a double-Mach reflection (DMR) is formed if the
interaction between the shock wave reflection and the shock-induced flow deflection process is
strong. When a DMR is formed, the primary Mach stem is sometimes kinked, similar to the
carbuncle phenomenon. Figures 17 and 18 show numerical results of the kinked Mach stem test
problem. A planar moving shock has a speed of Ms=5.5 and the ramp angle is 30◦. The grid size
is 401×401. The original HLLC and Roe schemes in Figures 17 and 18 show the kinked primary
Mach stem and it affects the secondary reflected shock from the secondary triple point. Using the
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Figure 14. Pressure, temperature, and total enthalpy profile along the stagnation line of supersonic sphere
flow (second-order WAF with MINBEE (Minmod) limiter).
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Figure 15. Supersonic sphere flow, density, and blending function distribution (second-order
MUSCL with MINBEE (Minmod) limiter).

blending function f , the spurious kinked Mach stem is completely eliminated. Figure 19 shows
the blending function distributions, and function f catches only strong shock waves, the moving
shock, the primary Mach stem, and the end of the curved part of the reflected shock. There is
an incipient odd–even decoupling, where the incident shock crosses the upper boundary for both
the HLLC and Roe schemes in Figures 17 and 18. The shock instability is more likely to appear
in a high-resolution simulation. Figure 20 shows the higher-resolution results. The grid size is
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Figure 16. Pressure, temperature, and total enthalpy profile along the stagnation line of supersonic sphere
flow (second-order MUSCL with MINBEE (Minmod) limiter).
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Figure 17. Kinked Mach stem problem, density contour (second-order
WAF with MINBEE (Minmod) limiter).

801×801. The spurious primary Mach stem and the incipient odd–even decoupling near the upper
wall are more clearly seen.

One may have a suspicion that the additional dissipation of the HLLC–HLL and Roe–HLL can
smear intermediate waves such as slip surfaces. The kinked Mach stem problem is a good example
to discuss this issue. As shown in Figure 19, additional dissipation is added along the incident
shock and the primary Mach stem. The primary slip surface is directly connected to the incident
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Figure 18. Kinked Mach stem problem, density contour (second-order
MUSCL with MINBEE (Minmod) limiter).
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:WAF

Roe-HLLE
:MUSCL

Figure 19. Blending function distribution of the kinked Mach stem problem.

shock and the primary Mach stem. As shown in Figures 17, 18, and 20, the primary slip surface at
this triple point shows good resolution. Therefore, local addition of the dissipation has no adverse
effect on the resolution of such waves.
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HLLC

Roe

HLLC-HLL

Roe-HLLE

Figure 20. Higher-resolution results of the kinked Mach stem problem, density contour (second-order
WAF with MINBEE (Minmod) limiter).

6.4. The supersonic corner flow

Figure 21 shows the results of the supersonic corner problem. A moving shock with Ms=5.09
diffracts around a 90◦ corner. The grid size is 51×201+401×401. The HLLC scheme has no
problem at the corner, but spurious oscillations are observed at the planar moving shock. The
Roe scheme still fails near the diffraction shock in high-resolution calculations. Without the use
of HLLE blending, the Roe scheme fails in high-order calculation. Roe–HLLE using the Haten–
Hyman entropy fix with HLLC/HLLE switching shows stable solutions. Figure 22 shows the
distributions of the blending function. HLLC/HLLE blending is activated on the step corner and
step wall at the end region of the sonic line where the expansion is strong. The blending function
also catches the shock waves.

7. CONCLUSION

Approximate Riemann solvers that resolve contact and shear waves have flaws, so-called shock
instabilities, in the vicinity of strong shocks. HLLC and Roe schemes are tested using Quirk’s
test problems and shock instability appears in both schemes. To avoid this nonphysical result, we
propose the control method of flux difference across the contact and shear waves in the star region
between the smallest and largest waves. The HLLC and Roe schemes are expressed in a single
framework and the proposed method is applied directly. This method is valid for strong shocks,
and a function is defined to capture strong shocks.

The odd–even decoupling and the carbuncle phenomenon are successfully controlled with our
method. The results of DMR flows show that our method has no adverse effect on the resolution
of the intermediate waves such as slip surfaces.
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HLLC HLLC-HLL

Roe-HLLE
:Harten-Hyman entropy fix

with  HLLC switching

Roe-HLLE
:Harten-Hyman entropy fix

with HLLE switching

Figure 21. Supersonic corner flow, density distribution (second-order
WAF with MINBEE (Minmod) limiter).

HLLC-HLL Roe-HLLE

Figure 22. Blending function distribution of supersonic corner flow.

The Roe scheme has another flaw for strong expansion flows. A modified Harten–Hymann
entropy fix method is suggested, which uses HLL-type scheme switching. In the supersonic corner
flow test, the modified entropy fix worked successfully and spurious oscillations are eliminated at
the planar moving shock.

The numerical results with HLLC–HLL and Roe–HLLE show that the shock instability is
strongly dependent on the contact resolving properties. Using the control method of flux difference
across the contact and shear waves, contact resolving schemes can be free from spurious numerical
instabilities.
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